
IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 51

AN APP BASED SOLUTION FOR SIGN LANGUAGE TO

TEXT CONVERSION

1Adithi Krishnan, 2Ruthvik B.R, 3Spoorthy M, 4Rhea Muthanna M,
5Shashank N

1Department of Computer Science and Engineering,Vidyavardhaka College of Engineering,

Mysore, Karnataka,India, adithikrishnan@yahoo.co.in

2Department of Computer Science and Engineering, Vidyavardhaka College of Engineering,

Mysore, Karnataka, India, ruthvikbr24@gmail.com

3Department of Computer Science and Engineering, Vidyavardhaka College of Engineering,

Mysore, Karnataka, India, spoorthymahesh183@gmail.com

4Department of Computer Science and Engineering, Vidyavardhaka College of Engineering,

Mysore, Karnataka, India, rheamuthanna.muthanna@gmail.com

5Department of Computer Science and Engineering, Vidyavardhaka College of Engineering,

Mysore, Karnataka, India, shashank.n@vvce.ac.in

Abstract --Sign languages are a way in which languages use the
visual – manual means to convey a message to the other person. It
usually has a predefined sign with each symbol representing a letter.
Series of signs are used in order to convey a sentence. The main aim
of this paper is to develop a mobile application-based solution that

takes sign language gestures as input to a trained deep learning
model built using 2D Convolutional Neural Networks and converts
it to text and voice outputs in real-time for improved and finer
communication. The basic idea behind this is that sign language is
not one that is commonly learnt by all and hence people who are
familiar with sign language only are able to communicate with the
mute. This solution aims to bridge that knowledge gap between
people irrespective of their familiarity with sign language. After

implementing our solution, it is found that the model predicts
gestures with an accuracy rate of 78%. Once translated, the text was
also converted to audio output using Text-to-speech library(tts).
This app-based approach comes in handy as most people today use
smartphones and hence the application can reach out to more users.

Keywords – Sign Language, Text, Voice, Convolutional Neural Network

1. INTRODUCTION

Language is a tool to solve the challenge of explicit communication. Under

language, we have two types: Spoken Languages and Sign Languages.

Spoken languages uses phonetics and sounds whereas Sign Languages

mainly involve gestures. Translating these gestures to actual human

understandable sentences in real-time is challenging due to various factors

like lighting, skin tone, background clutter etc. This conversion is also a step

by step process that involves image processing, object detection, computer

vision, natural language processing etc. This section tries to summarize why

this problem was researched, what each of the above technologies are and

how they are used in developing the application followed by what are the

exact steps taken in developing the application.

Sign Languages are the most important communication tools for deaf and

hard-of-hearing people. It is also used by people who aren’t deaf but cannot

speak. It is more expressive than spoken languages and involves a lot of

facial expressions, gestures, and hand movements. The same words can

become a statement, or a question based on the facial expression. Hence, it is

very challenging for a computer to interpret sign language gestures. Not

often do we have a system that can recognize signs with a high rate of

accuracy and hence sign language recognition and translation remains a field

with ongoing research.

Computer Vision is a subfield of Artificial Intelligence that uses Image

Processing algorithms to solve image related problems. Image Processing

deals with the methods that apply operations on a given image to obtain an

enhanced image or to obtain useful information from it using feature

extraction. There are 2 types of image processing – analog and digital. We

mainly focus on digital image processing which is used by modern digital

devices/computers to process digital images and perform image analysis.

The difference between computer vision and image processing can be

summarized as follows: If we want to enhance an image or extract some

information from it, say apply any transformations such as smoothening,

sharpening etc., then it is plain image processing. If our goal is to

mirror/emulate human vision such as detecting features, detecting objects,

http://www.ijreat.org/
http://www.prdg.org/
mailto:adithikrishnan@yahoo.co.in
mailto:ruthvikbr24@gmail.com
mailto:spoorthymahesh183@gmail.com
mailto:rheamuthanna.muthanna@gmail.com
mailto:shashank.n@vvce.ac.in

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 52

understanding the image, then it falls under Computer Vision. The

application presented in this paper explains how to use Image Processing and

Computer Vision techniques in taking the gesture in the form of an input

image and processing it to remove any nonessential information.

Object detection is a key field that acts like a bridge between Computer

Vision and Image Processing. It mainly focuses on detection of

objects/instances of a class in a frame. It usually uses machine learning or

deep learning techniques to furnish substantial results. Machine Learning

approach usually involves defining features and then classifying the objects

using some algorithm such as SVM or KNN classifier. Deep learning

approaches perform object detection from start to end and make use of

Convolutional Neural Networks. The methodology presented in this paper

uses Convolutional Neural Networks to construct the deep learning model.

Deep learning is a sub branch of machine learning which uses layers of

neural networks to obtain the important features from a raw image. The

network may be Convolutional Neural Networks, Recurrent Neural

Networks, Generative Adversarial Networks etc. In the methodology

proposed, Convolutional neural network that uses multiple layers of

perceptrons for analyzing the data plays an important role in building the

model.

Natural Language Processing is another branch of Artificial Intelligence, a

platoon of techniques which bestow upon computers the potential to read

and infer from human languages. These techniques are mainly used in

human – machine interactions. The application presented in this paper has

leveraged the text to speech conversion technique under this field to convert

text output generated to audio output as well.

The application presented in this paper has been designed to recognize

gestures of the American Sign Language. The approach used to achieve this

is as follows:

1. The dataset used is the ASL Alphabet dataset downloaded from

Kaggle.

2. A 2D Convolutional Neural Network with an input layer, 5

hidden layers and one output layer is used for training.

3. Keras, which runs on TensorFlow backend is used to implement

the network and train the network on the training dataset. A “.h5”

file is obtained after training.

4. This h5 file is then converted to a ‘tflite’ (TensorFlow Lite)

model which is used in the Android application.

5. The android application uses the camera present in the phone to

take pictures of gestures as input.

6. This image is then passed to the tflite model which returns the 3

most likely translations of that gesture.

7. Once the desired translation is selected, it is displayed as text on

the screen.

8. To convert the same text to audio, we have leveraged the TTS

(text to speech) library available in Android which converts the

text to audio and plays it out loud.

A detailed explanation of each of the above steps in the process is present

under the Methodology section

2. BACKGROUND AND RELATED WORK

Based on our initial survey regarding various techniques used for sign

language translation as presented in [1], we feel, most of the approaches

make use of Convolutional Neural Networks in building the trained model.

The methods which present real-time detection of sign language gestures

usually take video as input, divides it into frames and converts each frame

into its corresponding sign using the model. Some methods have also used

SVMs and LPP algorithms for real time sign language to text conversion.

There is also another approach which involves the use of flex sensors

attached to gloves that can be worn on the hand. Based on the hand

movements, the sensors pick up various gestures which are then converted to

text using an analog to digital converter and microcontroller. Since

Convolutional Neural Networks form the basis for many of the approaches

presented, we decided to deep dive into it and research a bit more to

understand and build a network that adapts to our needs.

2.1 NEURAL NETWORKS

Neural networks are circuits of neurons, or as more frequently expressed, a

network of artificial neurons/nodes. These networks are constructed in such a

way as to mimic a biological neural network and the connections of a

biological neuron are modeled as weights. They are usually used to identify

relationships between vast amounts of data, usually unstructured data. The

neural is a network that has weights on it and we can adjust the weights in

order to train the network. This happens with a lot of trails and fine-tuning

parameters. The following image shows the many types of neural networks

used.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 53

Fig 2.1.1 The types of neural networks [2]

Some terms associated with neural networks that we need to understand the

definitions of are as follows:

● Kernel – It is a convolution matrix or mask which is used for

blurring, edge detection , sharpening and more by convoluting a kernel

and an image.

● Kernel Size –It determines the size of the kernel. Common dimensions

of the kernel size are (1x1), (3x3), (5x5) and so on. It specifies the

height and width of the kernel and it must be of odd integer sizes only.

● Max Pooling – Replacing each patch in the input with a single output

is known as pooling. Max pooling refers to moving a 2D window

across the image, where the maximum value within each window is

given as output.
● Flatten – It is used on tensors to remove all its dimensions except one.

This helps in reshaping tensors so that it will have the shape equal to

the number of elements in the tensor, not including the dimension of

the batch.

● Dropout – During the training neurons are randomly chosen to be

ignored. They are ignored during a particular backward/forward pass.

Dropout is not applied to the output layer of the neural network.
● Dense – It is an operation that connects every input to every output by

a weight. It is followed by an activation function that is not linear.
● Activation – These functionsdetermine the output of a neural network

and are basically a mathematical equation. Each neuron in the network

is associated with this and the output of this function determines if a

neuron should be activated / fired or.
● Sigmoid - It is an activation function used in neural networks whose

value lies between 0.0 and 1.0 indicating the probability of a

classification.
● ReLU – Rectified Linear Unit isdefined mathematically as y =

maximum(0, x). The function is linear for all positive inputs and 0 for

negative. It is one of the Most used activation functions in CNNs and

is cheap to compute and training time is also less.
● Softmax - This functionis used for multiple classes. It gives the

probabilities for each class in the range of 0 and 1. The sum of all the

classes are calculated and used to divide the previously obtained

probabilities. This gives the probability of an input belonging to each

class. It is useful for output neurons. It is used only for the output

layer, for classification with more than 2 classes.
● Kernel initializer - It is the initializer for the kernel weights matrix.
● KernelRegularizer - It is a technique used to reduce overfitting by

fitting a function appropriately on the given training set
● Batch Normalization - It is a technique used to training DNNs that

standardize the inputs to a layer for each mini-batch
● Padding – It is a parameter that determines whether the kernel is zero-

padded or not. If it is not zero padded, it means that the spatial

dimension can reduce via the application of convolutions.
● Optimizer – Optimizers are methods used to change attributes of a

neural network to minimize the losses.

● Adam Optimizer - It is used in training deep learning models. This

optimizer is an optimization algorithm for stochastic gradient descent

. Adam combines the pros of the AdaGrad and RMSProp algorithms

making it easy to handle sparse gradients on noisy problems.

2.2 CONVOLUTIONAL NEURAL NETWORKS

 CNNs fall under the category of deep neural networks. They are most

commonly used for image analysis, image recognition, object detection etc.

They are specifically designed to process pixel data and it is also observed

that the CNNs have their neurons arranged similar to those in the brain’s

frontal lobe, the area which is responsible for handling visual input in

animals. Traditional neural networks are usually given pieces images with

reduced resolution as input but given their architecture, CNNs can be given

high resolution images thus avoiding the above problem.

The following image depicts a typical Convolutional Neural Network used

for image classification.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 54

Fig 2.2.1 Typical Convolutional Neural Network [3]

2.2.1 ARCHITECTURE OF CONVOLUTIONAL NEURAL

NETWORK [4]

This section explains how a Convolutional Neural Network trains and

predicts and is based on the mathematical operations/logic behind it.

A Convolutional Neural Network usually takes a tensor of order 3 (an image

with R rows, C columns and D color channels where D is usually 3 (RGB) in

case of color images. Higher order tensors can also be handled by CNNs.

Since we are dealing with color images in this problem, we will continue

with an order 3 tensor as input. Each tensor/image then undergoes a series of

processing steps sequentially. Each processing step here is called a layer.

Fig 2.2.1.1: The equation of a Convolutional Neural Network

The above image illustrates the equation of a Convolutional Neural Network,

how the network runs layer by layer. Each box depicts each layer and the

input image undergoes processing in every layer. Parameters involved in the

processing at each layer are collectively depicted as w1 to wL-1. One

additional layer is added for backpropagation. The last layer is a loss layer

and usually it is a cross entropy loss for classification problems.

2.3 INTRODUCTION TO ANDROID APPLICATION

PROGRAMMING [5]

Android is one of the prominent Operating Systems for mobiles devices.

Developing applications for Android devices lets us target a large audience.

Android applications are developed using Android studio. We can make use

of Java or Kotlin to build and deploy applications. We can also use the

inbuilt tools to test and integrate with cloud. We have built an Android

application which targets the majority of the devices from Android version

“Lollipop” till Android version “pie”.

Fragments are a small component that act like building blocks of a layout

and can be used to alter layouts according to device specification. Same

fragments can be used to design different layout viewing for tablet devices

and mobile devices. Fragments run in the context of an activity and they

contain certain reusable functionalities. We have made use of 2 fragments in

our application.

2.4 INTRODUCTION TO KERAS [6]

Keras is an open source neural network API. It is built using Python and can

be used on top of TensorFlow, CNTK andTheano. It allows fast and easy

prototyping, supports both CNNs and RNNs as well as a combination of

both. It is designed to run coherently on both CPUs and GPUs. User

friendliness, Modularity, Easy extensibility and working with Python are the

main advantages of Keras over other libraries.

We have used Keras version 2.3.1 running on a TensorFlow backend while

building the model.

2.5 INTRODUCTION TO TENSORFLOW LITE [7]

TensorFlow Lite is an open source framework for deep learning and helps us

to run deep learning models on mobile, embedded and IoT devices. It helps

us leverage the power of on-device learning with low latency and small

binary size. It consists of two components – TensorFlow Lite converter and

interpreter. The interpreter runs the optimized Machine learning models on

different devices and the converter is used to convert TensorFlow models

into a format like tflite thatwill be used by the interpreter.

Using TensorFlow Lite has advantages that include reduced latency, privacy,

connectivity and reduced power consumption. Since models are converted

and stored on the device, there is no round trip needed to get responses from

model stored on a server. This reduces latency. Data that is fed to the model

need not leave the device and hence this takes care of data privacy. Since no

network connectivity is needed, this reduces the power consumed by the

application.

The TensorFlow Lite binary requires only around 300KB when using

operatorsfor supporting pre-trained image classification models like

MobileNetand InceptionV3. If passing all parameters is required, then the

size may go up to a maximum of 1MB. For our application, we have

converted the generated h5 file to a TensorFlow model and then to a

TensorFlow Lite model.

3. METHODOLOGY

The solution method adopted by us is to first train the network on the ASL

Alphabet Dataset downloaded from Kaggle, convert the obtained model to a

TensorFlow Lite model to enable on device inference. Next is to build an

Android application that uses the in-device camera to obtain sign language

gestures and send it to the model for translation. Once the translation is

obtained, we display the text on screen. This text string is also converted to

audio output using the Text to Speech library present in Android. The audio

output will then be fed to smart assistants such as Alexa, google assistant

which will make it easier to solve user requirements.

The following section gives a detailed explanation about how the application

and neural network are built.

3.1 THE DATA SET USED

We have downloaded the “ASL Alphabet” data set from Kaggle. This

dataset consists of 2 folders: ASL Alphabet Train and ASL Alphabet Test.

The Train folder consists of 29 subfolders, one for each letter of the

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 55

Alphabet and one each for “del”, “space” and “nothing”. Each subfolder

consists of 3000 images for each letter, taken at different angles, with varied

lighting and at different proximities as well. The Test folder consists of 29

subfolders, one for each letter of the Alphabet and one each for “space”,

“del” and “nothing”. Each of these subfolders contains 1 image each. All the

images are of size 200x200.

3.2 THE CONVOLUTIONAL NEURAL NETWORK

We have 87000 images in the training directory which is 3000 per class and

8700 images in the validation directory which is 300 images per class. The

training is run for 50 epochs. The training images are rescaled by a factor of

1/255, rotation range of 30, shear range and zoom range of 0.3, width and

height shift range of 0.4 with random horizontal flipping. Images in the

validation category are also rescaled by a factor of 1/255.

We have leveraged the Keras library to build the CNN to train the model

using the KerasConv2D() function and the Sequential() class. The Conv2D()

function adds a 2D convolution layer that applies a spatial convolution on an

input image and outputs a tensor.

We have built a CNN with 7 blocks. The batch size of the network is set to

100 and the kernel initializer is set to “he_normal” which obtains samples

from a truncated normal distribution centered on 0.

The first block is made up of a 2D layer with 32 filters, kernel size of (7,7),

and uses ReLU activation function and batch normalization. This is followed

by another 2d convolution layer with 32 filters, 7x7 kernel size and “ReLU”

activation and batch normalization. A max pooling layer with pool size (2,2)

is added along with a dropout of 0.2.

The second, third and fourth blocks consist of the same layers with changes

only in the number of filters and kernel size. Block 2 has 64 filters with

kernel size (5,5), Block 3 has 128 filters with kernel size (3,3) and Block 4

has 256 filters with kernel size (3,3).

Block 5 first flattens the output of the 4th block and then has a dense fully

connected layer with 64 filters. ReLU activation function with batch

normalization and dropout of 0.5 is added. Block 6 is like block 5 without

the flattening performed.

Block 7 is the output layer which has a fully connected/dense layer with 29

neurons and a Softmax activation function.

Early Stopping and ReduceLROnPlateau are also leveraged to reduce

overfitting. EarlyStopping is a callback that allows us to monitor the

performance measure and the mode. Once triggered, it will stop the training

process. We have set the monitor to minimize validation loss.

ReduceLROnPlateau is another callback which reduces the learning rate

when a particular metric does not improve further. Monitor is set to

validation loss with a reduce factor of 0.2 and a threshold learning rate of

0.0001. We have also used the Adam optimizer with a learning rate of 0.01

to minimize the “categorical cross entropy” loss.

The checkpoints for the model with monitor as validation loss are stored as a

h5 file with only the best weight values stored at the end of training in the

model file.

This model file is then converted to a tflite model using TensorFlow library.

This file will be stored in an “assets” folder in the project file. Storing here

would mean that the android application will use the tflite model file in its

raw form without compressing it. This file will be built into the APK.

3.3 THE ANDROID APPLICATION

The application makes use of the mobile camera and displays everything that

can be viewed through the camera in the camera preview built in the app.

This preview in turn sends frames one by one to the classifier. The job of the

classifier is to detect the part of the image that contains the hand and then

send it to model as input. The input size of the image for the model is 200 x

200.

The classifier then receives the top three outputs from the model, and these

are displayed under the preview. The next step is to form a sentence, which

can be done by using the add button provided below the results. This button

adds the result with the highest probability. The user uses sign language

gestures to form sentences before the camera and forms the sentences. Once

the sentence is formed, the user will click on the speak button which will

send the string output to the ‘tts’ library and ‘tts’ methods give us the audio

output. This output will be eventually fed to assistants like Alexa, Google

Assistant. The application also works when the device is rotated.

The application is designed using two fragments. The first fragment is a

camera preview that displays the live feed through the camera of the device.

We make use of “camera 2 API”. The second fragment is a layout that

displays the results and contains a button to add words to form a sentence

and then another button to pass the formed sentence to the “Text to Speech”

methods, thereby obtaining the audio output. Both fragments are then used

one below the other in one activity.

4. RESULTS AND DISCUSSION

With the above training model in place, after training for 15 epochs, we were

able to achieve a loss of 0.4083 or 40.83%, a training accuracy of 0.8748 or

87.48%, a validation loss of 0.1045 or 10.45% and a validation accuracy of

0.9681 or 96.81% when using “ReLU” activation function for all blocks and

“Softmax” function for the output layer. We also tested the same model with

the “sigmoid” activation function in combination with “Softmax” at the

output layer, results for which are discussed below.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 56

Fig 5.1 Training vs Validation Accuracy (sigmoid)

Fig 5.2 Training vs Validation loss (sigmoid)

Due to the callbacks present in the code, i.e., early stopping and

reduceLROnPlateau, the training ended at 15 epochs and did not continue

further.

The following graphs represent the variation in the above 4 parameters

between epochs when ReLU activation function is used.

Fig 5.3 Training vs Validation Accuracy (ReLU)

Fig 5.4 Training loss vs Validation loss (ReLU)

The graphs presented above depicts that there are a lot of variations in the

training vs validation metrics when sigmoid is used whereas not much

variation is present when ReLU function is used. The model also performs

better with “ReLU” rather than “sigmoid”.

We have tested our application with different input gestures and with

varying background and lighting. After analyzing the outputs, we feel it is

safe to say that our application can effectively translate ASL gestures to text

and audio with an accuracy rate of 80%.

There are certain drawbacks in our application. The application might not

work as expected in crowded areas or regions with less/poor lighting

conditions. The current application works with a local model and hence is

trained to predict only American Sign Language gestures. We can host the

model in Firebase and use multiple models according to the different regions

which use different sign language.

One more feature which we plan to incorporate in our application is the exact

reverse of what we are doing, i.e., take text or audio as input and output it on

the screen in the form of sign language gestures.

These are some points which we can take for further improvement of our

application and for future research.

5. CONCLUSION

As related to the problem statement mentioned in the “Abstract” section,

we have tried to develop an Android application that takes in American

Sign language gestures as input and converts them to text and audio output

in real-time. Using a CNN to train the model on the dataset has given us an

accuracy of 86% with which we are able to classify the gestures real-time.

TensorFlow Lite works exceptionally well for devices with less processing

powers. If we want to host the model using Firebase, we need network

connectivity to download the model. This is eliminated in our application as

we are using an inbuilt model. APK size is 24MB. Our application also

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering& Advanced Technology, Volume 8, Issue 4, Aug - Sep, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 57

provides links to tutorials on American Sign Language so that everyone can

learn sign language. We feel that this application is helpful for developing a

more connected society where language and speech is not a barrier for

people to communicate effectively. This application would help people to

understand what the mute are trying to say or express using their gestures

and understand them better.

Future areas of research would include methods to improve the accuracy by

trying image augmentation and transfer learning, converting text and audio

back to sign language gestures and how to effectively make use of neural

networks for this task.

6. ACKNOWLEDGEMENT

The authors express their appreciation for the support provided by our

mentors and faculty members who have guided us during the research and

helped us achieve desired results.

7. REFERENCES

[1] Adithi Krishnan, Ruthvik B R, Spoorthy M, Rhea Muthanna M,

Shashank N, “Sign Language to Text Conversion – A Survey”, International

Journal of Scientific and Engineering Research, Volume 8, Issue 1,

November 2019. ISSN 2229-5518.

[2] https://www.digitalvidya.com/blog/types-of-neural-networks/

[3] https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-

convolutional-neural-networks/

[4] Jianxin Wu, “Introduction to Convolutional Neural Networks”, LAMDA

group, National Key Lab for Novel Software Technology, Nanjing

University, China, May 1, 2017.

[5] http://developer.android.com/

[6] https://keras.io/

[7] https://www.tensorflow.org/lite/guide

http://www.ijreat.org/
http://www.prdg.org/
https://www.digitalvidya.com/blog/types-of-neural-networks/
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
http://developer.android.com/
https://keras.io/
https://www.tensorflow.org/lite/guide

