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Abstract --Sign languages are a way in which languages use the 
visual – manual means to convey a message to the other person. It 
usually has a predefined sign with each symbol representing a letter. 
Series of signs are used in order to convey a sentence. The main aim 
of this paper is to develop a mobile application-based solution that 

takes sign language gestures as input to a trained deep learning 
model built using 2D Convolutional Neural Networks and converts 
it to text and voice outputs in real-time for improved and finer 
communication. The basic idea behind this is that sign language is 
not one that is commonly learnt by all and hence people who are 
familiar with sign language only are able to communicate with the 
mute. This solution aims to bridge that knowledge gap between 
people irrespective of their familiarity with sign language. After 

implementing our solution, it is found that the model predicts 
gestures with an accuracy rate of 78%. Once translated, the text was 
also converted to audio output using Text-to-speech library(tts). 
This app-based approach comes in handy as most people today use 
smartphones and hence the application can reach out to more users.  
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1. INTRODUCTION 

Language is a tool to solve the challenge of explicit communication. Under 

language, we have two types: Spoken Languages and Sign Languages. 

Spoken languages uses phonetics and sounds whereas Sign Languages 

mainly involve gestures. Translating these gestures to actual human 

understandable sentences in real-time is challenging due to various factors 

like lighting, skin tone, background clutter etc. This conversion is also a step 

by step process that involves image processing, object detection, computer 

vision, natural language processing etc. This section tries to summarize why 

this problem was researched, what each of the above technologies are and 

how they are used in developing the application followed by what are the 

exact steps taken in developing the application.  

Sign Languages are the most important communication tools for deaf and 

hard-of-hearing people. It is also used by people who aren’t deaf but cannot 

speak. It is more expressive than spoken languages and involves a lot of 

facial expressions, gestures, and hand movements. The same words can 

become a statement, or a question based on the facial expression. Hence, it is 

very challenging for a computer to interpret sign language gestures. Not 

often do we have a system that can recognize signs with a high rate of 

accuracy and hence sign language recognition and translation remains a field 

with ongoing research.  

Computer Vision is a subfield of Artificial Intelligence that uses Image 

Processing algorithms to solve image related problems. Image Processing 

deals with the methods that apply operations on a given image to obtain an 

enhanced image or to obtain useful information from it using feature 

extraction. There are 2 types of image processing – analog and digital. We 

mainly focus on digital image processing which is used by modern digital 

devices/computers to process digital images and perform image analysis. 

The difference between computer vision and image processing can be 

summarized as follows: If we want to enhance an image or extract some 

information from it, say apply any transformations such as smoothening, 

sharpening etc., then it is plain image processing. If our goal is to 

mirror/emulate human vision such as detecting features, detecting objects, 
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understanding the image, then it falls under Computer Vision. The 

application presented in this paper explains how to use Image Processing and 

Computer Vision techniques in taking the gesture in the form of an input 

image and processing it to remove any nonessential information. 

Object detection is a key field that acts like a bridge between Computer 

Vision and Image Processing. It mainly focuses on detection of 

objects/instances of a class in a frame. It usually uses machine learning or 

deep learning techniques to furnish substantial results. Machine Learning 

approach usually involves defining features and then classifying the objects 

using some algorithm such as SVM or KNN classifier. Deep learning 

approaches perform object detection from start to end and make use of 

Convolutional Neural Networks. The methodology presented in this paper 

uses Convolutional Neural Networks to construct the deep learning model. 

Deep learning is a sub branch of machine learning which uses layers of 

neural networks to obtain the important features from a raw image.  The 

network may be Convolutional Neural Networks, Recurrent Neural 

Networks, Generative Adversarial Networks etc.  In the methodology 

proposed, Convolutional neural network that uses multiple layers of 

perceptrons for analyzing the data plays an important role in building the 

model.  

Natural Language Processing is another branch of Artificial Intelligence, a 

platoon of techniques which bestow upon computers the potential to read 

and infer from human languages. These techniques are mainly used in 

human – machine interactions. The application presented in this paper has 

leveraged the text to speech conversion technique under this field to convert 

text output generated to audio output as well.  

The application presented in this paper has been designed to recognize 

gestures of the American Sign Language. The approach used to achieve this 

is as follows: 

1. The dataset used is the ASL Alphabet dataset downloaded from 

Kaggle. 

2. A 2D Convolutional Neural Network with an input layer, 5 

hidden layers and one output layer is used for training. 

3. Keras, which runs on TensorFlow backend is used to implement 

the network and train the network on the training dataset. A “.h5” 

file is obtained after training. 

4. This h5 file is then converted to a ‘tflite’ (TensorFlow Lite) 

model which is used in the Android application. 

5. The android application uses the camera present in the phone to 

take pictures of gestures as input. 

6. This image is then passed to the tflite model which returns the 3 

most likely translations of that gesture. 

7. Once the desired translation is selected, it is displayed as text on 

the screen. 

8. To convert the same text to audio, we have leveraged the TTS 

(text to speech) library available in Android which converts the 

text to audio and plays it out loud. 

A detailed explanation of each of the above steps in the process is present 

under the Methodology section 

 

2. BACKGROUND AND RELATED WORK 

Based on our initial survey regarding various techniques used for sign 

language translation as presented in [1], we feel, most of the approaches 

make use of Convolutional Neural Networks in building the trained model. 

The methods which present real-time detection of sign language gestures 

usually take video as input, divides it into frames and converts each frame 

into its corresponding sign using the model. Some methods have also used 

SVMs and LPP algorithms for real time sign language to text conversion. 

There is also another approach which involves the use of flex sensors 

attached to gloves that can be worn on the hand. Based on the hand 

movements, the sensors pick up various gestures which are then converted to 

text using an analog to digital converter and microcontroller. Since 

Convolutional Neural Networks form the basis for many of the approaches 

presented, we decided to deep dive into it and research a bit more to 

understand and build a network that adapts to our needs.  

 

2.1 NEURAL NETWORKS 

 

Neural networks are circuits of neurons, or as more frequently expressed, a 

network of artificial neurons/nodes. These networks are constructed in such a 

way as to mimic a biological neural network and the connections of a 

biological neuron are modeled as weights. They are usually used to identify 

relationships between vast amounts of data, usually unstructured data. The 

neural is a network that has weights on it and we can adjust the weights in 

order to train the network. This happens with a lot of trails and fine-tuning 

parameters.  The following image shows the many types of neural networks 

used.  
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Fig 2.1.1 The types of neural networks [2] 

 

Some terms associated with neural networks that we need to understand the 

definitions of are as follows: 

 

● Kernel – It is a convolution matrix or mask which is  used for 

blurring, edge detection , sharpening and more by convoluting a kernel 

and an image. 

● Kernel Size –It determines the size of the kernel. Common dimensions 

of the kernel size are (1x1), (3x3), (5x5) and so on. It specifies the 

height and width of the kernel and it must be of odd integer sizes only. 

● Max Pooling – Replacing each patch in the input with a single output 

is known as pooling. Max pooling refers to moving a 2D window 

across the image, where the maximum value within each window is 

given as output. 
● Flatten – It is used on tensors to remove all its dimensions except one. 

This helps in reshaping tensors so that it will have the shape equal to 

the number of elements in the tensor, not including the dimension of 

the batch. 

● Dropout – During the training neurons are randomly chosen to be 

ignored. They are ignored during a particular backward/forward pass. 

Dropout is not applied to the output layer of the neural network. 
● Dense – It is an operation that connects  every input to every output by 

a weight. It is followed by an activation function that is not linear. 
● Activation – These functionsdetermine the output of a neural network 

and are basically a mathematical equation. Each neuron in the network 

is associated with this and the output of this function determines if a 

neuron should be activated / fired or. 
● Sigmoid - It is an activation function used in neural networks whose 

value lies between 0.0 and 1.0 indicating the probability of a 

classification. 
● ReLU – Rectified Linear Unit isdefined mathematically as y = 

maximum(0, x). The function is linear for all positive inputs and 0 for 

negative. It is one of the Most used activation functions in CNNs and 

is cheap to compute and training time is also less. 
● Softmax - This functionis used for  multiple classes. It gives the 

probabilities for each class in the range of 0 and 1. The sum of all the 

classes are calculated and used to divide the previously obtained 

probabilities. This gives the probability of an input belonging to each 

class. It is useful for output neurons. It is used only for the output 

layer, for classification with more than 2 classes. 
● Kernel initializer - It is the initializer for the kernel weights matrix. 
● KernelRegularizer - It is a  technique used to reduce overfitting by 

fitting a function appropriately on the given training set  
● Batch Normalization - It is a technique used to training DNNs that 

standardize the inputs to a layer for each mini-batch 
● Padding – It is a parameter that determines whether the kernel is zero-

padded or not. If it is not zero padded, it means that the spatial 

dimension can reduce via the application of convolutions. 
● Optimizer – Optimizers are methods used to change attributes of a 

neural network to minimize the losses. 

● Adam Optimizer - It is used in training deep learning models. This 

optimizer is an optimization algorithm for stochastic gradient descent 

. Adam combines the pros of the AdaGrad and RMSProp algorithms 

making it easy to handle sparse gradients on noisy problems. 
 

 

2.2 CONVOLUTIONAL NEURAL NETWORKS 

 

 CNNs fall under the category of deep neural networks. They are most 

commonly used for image analysis, image recognition, object detection etc. 

They are specifically designed to process pixel data and it is also observed 

that the CNNs have their neurons arranged similar to those in the brain’s 

frontal lobe, the area which is responsible for handling visual input in 

animals. Traditional neural networks are usually given pieces images with 

reduced resolution as input but given their architecture, CNNs can be given 

high resolution images thus avoiding the above problem.  

 

The following image depicts a typical Convolutional Neural Network used 

for image classification. 
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Fig 2.2.1 Typical Convolutional Neural Network [3] 

 

 

2.2.1 ARCHITECTURE OF CONVOLUTIONAL NEURAL 

NETWORK [4] 

This section explains how a Convolutional Neural Network trains and 

predicts and is based on the mathematical operations/logic behind it. 

A Convolutional Neural Network usually takes a tensor of order 3 (an image 

with R rows, C columns and D color channels where D is usually 3 (RGB) in 

case of color images.  Higher order tensors can also be handled by CNNs. 

Since we are dealing with color images in this problem, we will continue 

with an order 3 tensor as input. Each tensor/image then undergoes a series of 

processing steps sequentially. Each processing step here is called a layer.  

 

Fig 2.2.1.1: The equation of a Convolutional Neural Network 

The above image illustrates the equation of a Convolutional Neural Network, 

how the network runs layer by layer. Each box depicts each layer and the 

input image undergoes processing in every layer. Parameters involved in the 

processing at each layer are collectively depicted as w1 to wL-1. One 

additional layer is added for backpropagation. The last layer is a loss layer 

and usually it is a cross entropy loss for classification problems.  

2.3 INTRODUCTION TO ANDROID APPLICATION 

PROGRAMMING [5] 

 

Android is one of the prominent Operating Systems for mobiles devices. 

Developing applications for Android devices lets us target a large audience. 

Android applications are developed using Android studio. We can make use 

of Java or Kotlin to build and deploy applications. We can also use the 

inbuilt tools to test and integrate with cloud. We have built an Android 

application which targets the majority of the devices from Android version 

“Lollipop” till Android version “pie”. 

 

Fragments are a small component that act like building blocks of a layout 

and can be used to alter layouts according to device specification. Same 

fragments can be used to design different layout viewing for tablet devices 

and mobile devices. Fragments run in the context of an activity and they 

contain certain reusable functionalities. We have made use of 2 fragments in 

our application. 

 

2.4 INTRODUCTION TO KERAS [6] 

 

Keras is an open source neural network API. It is built using Python and can 

be used on top of TensorFlow, CNTK andTheano. It allows fast and easy 

prototyping, supports both CNNs and RNNs as well as a combination of 

both. It is designed to run coherently on both CPUs and GPUs. User 

friendliness, Modularity, Easy extensibility and working with Python are the 

main advantages of Keras over other libraries. 

 

We have used Keras version 2.3.1 running on a TensorFlow backend while 

building the model. 

 

 

2.5 INTRODUCTION TO TENSORFLOW LITE [7] 

 

TensorFlow Lite is an open source framework for deep learning and helps us 

to run deep learning models on mobile, embedded and IoT devices. It helps 

us leverage the power of on-device learning with low latency and small 

binary size. It consists of two components – TensorFlow Lite converter and 

interpreter. The interpreter runs the optimized Machine learning models on 

different devices and the converter is used to convert TensorFlow models 

into a format like tflite thatwill be used by the interpreter. 

 

Using TensorFlow Lite has advantages that include reduced latency, privacy, 

connectivity and reduced power consumption. Since models are converted 

and stored on the device, there is no round trip needed to get responses from 

model stored on a server. This reduces latency. Data that is fed to the model 

need not leave the device and hence this takes care of data privacy. Since no 

network connectivity is needed, this reduces the power consumed by the 

application.  

 

The TensorFlow Lite binary requires only around 300KB when using 

operatorsfor supporting pre-trained image classification models like 

MobileNetand InceptionV3. If passing all parameters is required, then the 

size may go up to a maximum of 1MB. For our application, we have 

converted the generated h5 file to a TensorFlow model and then to a 

TensorFlow Lite model.  

 

 

3. METHODOLOGY 

The solution method adopted by us is to first train the network on the ASL 

Alphabet Dataset downloaded from Kaggle, convert the obtained model to a 

TensorFlow Lite model to enable on device inference. Next is to build an 

Android application that uses the in-device camera to obtain sign language 

gestures and send it to the model for translation. Once the translation is 

obtained, we display the text on screen. This text string is also converted to 

audio output using the Text to Speech library present in Android. The audio 

output will then be fed to smart assistants such as Alexa, google assistant 

which will make it easier to solve user requirements. 

The following section gives a detailed explanation about how the application 

and neural network are built.  

3.1 THE DATA SET USED 

 

We have downloaded the “ASL Alphabet” data set from Kaggle. This 

dataset consists of 2 folders: ASL Alphabet Train and ASL Alphabet Test. 

The Train folder consists of 29 subfolders, one for each letter of the 
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Alphabet and one each for “del”, “space” and “nothing”. Each subfolder 

consists of 3000 images for each letter, taken at different angles, with varied 

lighting and at different proximities as well. The Test folder consists of 29 

subfolders, one for each letter of the Alphabet and one each for “space”, 

“del” and “nothing”. Each of these subfolders contains 1 image each. All the 

images are of size 200x200. 

 

3.2 THE CONVOLUTIONAL NEURAL NETWORK 

We have 87000 images in the training directory which is 3000 per class and 

8700 images in the validation directory which is 300 images per class. The 

training is run for 50 epochs. The training images are rescaled by a factor of 

1/255, rotation range of 30, shear range and zoom range of 0.3, width and 

height shift range of 0.4 with random horizontal flipping. Images in the 

validation category are also rescaled by a factor of 1/255.  

We have leveraged the Keras library to build the CNN to train the model 

using the KerasConv2D() function and the Sequential() class. The Conv2D() 

function adds a 2D convolution layer that applies a spatial convolution on an 

input image and outputs a tensor. 

 

We have built a CNN with 7 blocks. The batch size of the network is set to 

100 and the kernel initializer is set to “he_normal” which obtains samples 

from a truncated normal distribution centered on 0.  

 

The first block is made up of a 2D layer with 32 filters, kernel size of (7,7), 

and uses ReLU activation function and batch normalization. This is followed 

by another 2d convolution layer with 32 filters, 7x7 kernel size and “ReLU” 

activation and batch normalization. A max pooling layer with pool size (2,2) 

is added along with a dropout of 0.2.  

 

The second, third and fourth blocks consist of the same layers with changes 

only in the number of filters and kernel size. Block 2 has 64 filters with 

kernel size (5,5), Block 3 has 128 filters with kernel size (3,3) and Block 4 

has 256 filters with kernel size (3,3). 

 

Block 5 first flattens the output of the 4th block and then has a dense fully 

connected layer with 64 filters. ReLU activation function with batch 

normalization and dropout of 0.5 is added. Block 6 is like block 5 without 

the flattening performed. 

 

Block 7 is the output layer which has a fully connected/dense layer with 29 

neurons and a Softmax activation function.  

 

Early Stopping and ReduceLROnPlateau are also leveraged to reduce 

overfitting. EarlyStopping is a callback that allows us to monitor the 

performance measure and the mode. Once triggered, it will stop the training 

process. We have set the monitor to minimize validation loss. 

ReduceLROnPlateau is another callback which reduces the learning rate 

when a particular metric does not improve further. Monitor is set to 

validation loss with a reduce factor of 0.2 and a threshold learning rate of 

0.0001. We have also used the Adam optimizer with a learning rate of 0.01 

to minimize the “categorical cross entropy” loss. 

 

The checkpoints for the model with monitor as validation loss are stored as a 

h5 file with only the best weight values stored at the end of training in the 

model file. 

 

This model file is then converted to a tflite model using TensorFlow library. 

This file will be stored in an “assets” folder in the project file. Storing here 

would mean that the android application will use the tflite model file in its 

raw form without compressing it. This file will be built into the APK.  

 

 

3.3 THE ANDROID APPLICATION 

 

The application makes use of the mobile camera and displays everything that 

can be viewed through the camera in the camera preview built in the app. 

This preview in turn sends frames one by one to the classifier. The job of the 

classifier is to detect the part of the image that contains the hand and then 

send it to model as input. The input size of the image for the model is 200 x 

200. 

 

The classifier then receives the top three outputs from the model, and these 

are displayed under the preview. The next step is to form a sentence, which 

can be done by using the add button provided below the results. This button 

adds the result with the highest probability. The user uses sign language 

gestures to form sentences before the camera and forms the sentences. Once 

the sentence is formed, the user will click on the speak button which will 

send the string output to the ‘tts’ library and ‘tts’ methods give us the audio 

output. This output will be eventually fed to assistants like Alexa, Google 

Assistant. The application also works when the device is rotated.  

 

The application is designed using two fragments. The first fragment is a 

camera preview that displays the live feed through the camera of the device. 

We make use of “camera 2 API”. The second fragment is a layout that 

displays the results and contains a button to add words to form a sentence 

and then another button to pass the formed sentence to the “Text to Speech” 

methods, thereby obtaining the audio output. Both fragments are then used 

one below the other in one activity. 

 

 

4. RESULTS AND DISCUSSION 

With the above training model in place, after training for 15 epochs, we were 

able to achieve a loss of 0.4083 or 40.83%, a training accuracy of 0.8748 or 

87.48%, a validation loss of 0.1045 or 10.45% and a validation accuracy of 

0.9681 or 96.81% when using “ReLU” activation function for all blocks and 

“Softmax” function for the output layer. We also tested the same model with 

the “sigmoid” activation function in combination with “Softmax” at the 

output layer, results for which are discussed below. 
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Fig 5.1 Training vs Validation Accuracy (sigmoid) 

 

Fig 5.2 Training vs Validation loss (sigmoid) 

Due to the callbacks present in the code, i.e., early stopping and 

reduceLROnPlateau, the training ended at 15 epochs and did not continue 

further. 

The following graphs represent the variation in the above 4 parameters 

between epochs when ReLU activation function is used.  

 

Fig 5.3 Training vs Validation Accuracy (ReLU) 

 

Fig 5.4 Training loss  vs Validation loss (ReLU) 

The graphs presented above depicts that there are a lot of variations in the 

training vs validation metrics when sigmoid is used whereas not much 

variation is present when ReLU function is used. The model also performs 

better with “ReLU” rather than “sigmoid”. 

We have tested our application with different input gestures and with 

varying background and lighting. After analyzing the outputs, we feel it is 

safe to say that our application can effectively translate ASL gestures to text 

and audio with an accuracy rate of 80%.  

There are certain drawbacks in our application. The application might not 

work as expected in crowded areas or regions with less/poor lighting 

conditions. The current application works with a local model and hence is 

trained to predict only American Sign Language gestures. We can host the 

model in Firebase and use multiple models according to the different regions 

which use different sign language. 

One more feature which we plan to incorporate in our application is the exact 

reverse of what we are doing, i.e., take text or audio as input and output it on 

the screen in the form of sign language gestures. 

These are some points which we can take for further improvement of our 

application and for future research. 

 

5. CONCLUSION 

 
As related to the problem statement mentioned in the “Abstract” section, 

we have tried to develop an Android application that takes in American 

Sign language gestures as input and converts them to text and audio output 

in real-time. Using a CNN to train the model on the dataset has given us an 

accuracy of 86% with which we are able to classify the gestures real-time.  

 

TensorFlow Lite works exceptionally well for devices with less processing 

powers. If we want to host the model using Firebase, we need network 

connectivity to download the model. This is eliminated in our application as 

we are using an inbuilt model. APK size is 24MB. Our application also 
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provides links to tutorials on American Sign Language so that everyone can 

learn sign language. We feel that this application is helpful for developing a 

more connected society where language and speech is not a barrier for 

people to communicate effectively. This application would help people to 

understand what the mute are trying to say or express using their gestures 

and understand them better.  

 

Future areas of research would include methods to improve the accuracy by 

trying image augmentation and transfer learning,  converting text and audio 

back to sign language gestures and how to effectively make use of neural 

networks for this task. 
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